منابع مشابه
A Remark on an Endpoint Kato-ponce Inequality
This note introduces bilinear estimates intended as a step towards an L∞-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.
متن کاملRemark on Ozeki Inequality for Convex Polygons
This paper gives proof of a discrete inequality that represents Ozeki’s inequality for convex polygons and its converse. The proof is based on determining eigenvalues of one nearly tridiagonal symmetric matrix.
متن کاملA Remark on the Mandl’s Inequality
So, we have (1.2) p1p2 · · · pn < (pn 2 )n (n ≥ 9), where also holds true by computation for 5 ≤ n ≤ 8. In other hand, one can get a trivial lower bound for that product using Euclid’s proof of infinity of primes; Letting En = p1p2 · · · pn−1 for every n ≥ 2, it is clear that pn < En. So, if pn < En < pn+1 then En should has a prime factor among p1, p2, · · · , pn which isn’t possible. Thus En ...
متن کاملA Remark on Gwinner’s Existence Theorem on Variational Inequality Problem
Gwinner (1981) proved an existence theorem for a variational inequality problem involving an upper semicontinuous multifunction with compact convex values. The aim of this paper is to solve this problem for a multifunction with open inverse values.
متن کاملHistorical Remark on Ramanujan′s Tau Function
It is shown that Ramanujan could have proved a special case of his conjecture that his tau function is multiplicative without any recourse to modularity results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1994
ISSN: 0022-247X
DOI: 10.1006/jmaa.1994.1179