Remark on an Inequality of S. Gabler

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on an Endpoint Kato-ponce Inequality

This note introduces bilinear estimates intended as a step towards an L∞-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.

متن کامل

Remark on Ozeki Inequality for Convex Polygons

This paper gives proof of a discrete inequality that represents Ozeki’s inequality for convex polygons and its converse. The proof is based on determining eigenvalues of one nearly tridiagonal symmetric matrix.

متن کامل

A Remark on the Mandl’s Inequality

So, we have (1.2) p1p2 · · · pn < (pn 2 )n (n ≥ 9), where also holds true by computation for 5 ≤ n ≤ 8. In other hand, one can get a trivial lower bound for that product using Euclid’s proof of infinity of primes; Letting En = p1p2 · · · pn−1 for every n ≥ 2, it is clear that pn < En. So, if pn < En < pn+1 then En should has a prime factor among p1, p2, · · · , pn which isn’t possible. Thus En ...

متن کامل

A Remark on Gwinner’s Existence Theorem on Variational Inequality Problem

Gwinner (1981) proved an existence theorem for a variational inequality problem involving an upper semicontinuous multifunction with compact convex values. The aim of this paper is to solve this problem for a multifunction with open inverse values.

متن کامل

Historical Remark on Ramanujan′s Tau Function

It is shown that Ramanujan could have proved a special case of his conjecture that his tau function is multiplicative without any recourse to modularity results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1179